Lua 5.1.4: lopcodes.h


L0001    /*
L0002    ** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $
L0003    ** Opcodes for Lua virtual machine
L0004    ** See Copyright Notice in lua.h
L0005    */
L0006    
L0007    #ifndef lopcodes_h
L0008    #define lopcodes_h
L0009    
L0010    #include "llimits.h"
L0011    
L0012    
L0013    /*===========================================================================
L0014      We assume that instructions are unsigned numbers.
L0015      All instructions have an opcode in the first 6 bits.
L0016      Instructions can have the following fields:
L0017    	`A' : 8 bits
L0018    	`B' : 9 bits
L0019    	`C' : 9 bits
L0020    	`Bx' : 18 bits (`B' and `C' together)
L0021    	`sBx' : signed Bx
L0022    
L0023      A signed argument is represented in excess K; that is, the number
L0024      value is the unsigned value minus K. K is exactly the maximum value
L0025      for that argument (so that -max is represented by 0, and +max is
L0026      represented by 2*max), which is half the maximum for the corresponding
L0027      unsigned argument.
L0028    ===========================================================================*/
L0029    
L0030    
L0031    enum OpMode {iABC, iABx, iAsBx};  /* basic instruction format */
L0032    
L0033    
L0034    /*
L0035    ** size and position of opcode arguments.
L0036    */
L0037    #define SIZE_C		9
L0038    #define SIZE_B		9
L0039    #define SIZE_Bx		(SIZE_C + SIZE_B)
L0040    #define SIZE_A		8
L0041    
L0042    #define SIZE_OP		6
L0043    
L0044    #define POS_OP		0
L0045    #define POS_A		(POS_OP + SIZE_OP)
L0046    #define POS_C		(POS_A + SIZE_A)
L0047    #define POS_B		(POS_C + SIZE_C)
L0048    #define POS_Bx		POS_C
L0049    
L0050    
L0051    /*
L0052    ** limits for opcode arguments.
L0053    ** we use (signed) int to manipulate most arguments,
L0054    ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
L0055    */
L0056    #if SIZE_Bx < LUAI_BITSINT-1
L0057    #define MAXARG_Bx        ((1<<SIZE_Bx)-1)
L0058    #define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */
L0059    #else
L0060    #define MAXARG_Bx        MAX_INT
L0061    #define MAXARG_sBx        MAX_INT
L0062    #endif
L0063    
L0064    
L0065    #define MAXARG_A        ((1<<SIZE_A)-1)
L0066    #define MAXARG_B        ((1<<SIZE_B)-1)
L0067    #define MAXARG_C        ((1<<SIZE_C)-1)
L0068    
L0069    
L0070    /* creates a mask with `n' 1 bits at position `p' */
L0071    #define MASK1(n,p)	((~((~(Instruction)0)<<n))<<p)
L0072    
L0073    /* creates a mask with `n' 0 bits at position `p' */
L0074    #define MASK0(n,p)	(~MASK1(n,p))
L0075    
L0076    /*
L0077    ** the following macros help to manipulate instructions
L0078    */
L0079    
L0080    #define GET_OPCODE(i)	(cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
L0081    #define SET_OPCODE(i,o)	((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
L0082    		((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
L0083    
L0084    #define GETARG_A(i)	(cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
Gets integer A fields bits of Instruction i.
L0085
#define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \ L0086 ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
Sets (in-place) A field bits of Instruction i to integer v.
L0087 L0088
#define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0))) L0089 #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \ L0090 ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B)))) L0091 L0092 #define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0))) L0093 #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \ L0094 ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C)))) L0095 L0096 #define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0))) L0097 #define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \ L0098 ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx)))) L0099 L0100 #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) L0101 #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) L0102 L0103 L0104 #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ L0105 | (cast(Instruction, a)<<POS_A) \ L0106 | (cast(Instruction, b)<<POS_B) \ L0107 | (cast(Instruction, c)<<POS_C))
Returns Instruction formed from opcode (OpCode) o and given integer A, B, C fields.
L0108 L0109
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ L0110 | (cast(Instruction, a)<<POS_A) \ L0111 | (cast(Instruction, bc)<<POS_Bx)) L0112 L0113 L0114 /* L0115 ** Macros to operate RK indices L0116 */ L0117 L0118 /* this bit 1 means constant (0 means register) */ L0119 #define BITRK (1 << (SIZE_B - 1)) L0120 L0121 /* test whether value is a constant */ L0122 #define ISK(x) ((x) & BITRK) L0123 L0124 /* gets the index of the constant */ L0125 #define INDEXK(r) ((int)(r) & ~BITRK) L0126 L0127 #define MAXINDEXRK (BITRK - 1) L0128 L0129 /* code a constant index as a RK value */ L0130 #define RKASK(x) ((x) | BITRK) L0131 L0132 L0133 /* L0134 ** invalid register that fits in 8 bits L0135 */ L0136 #define NO_REG MAXARG_A L0137 L0138 L0139 /* L0140 ** R(x) - register L0141 ** Kst(x) - constant (in constant table) L0142 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) L0143 */ L0144 L0145 L0146 /* L0147 ** grep "ORDER OP" if you change these enums L0148 */ L0149 L0150 typedef enum { L0151 /*---------------------------------------------------------------------- L0152 name args description L0153 ------------------------------------------------------------------------*/ L0154 OP_MOVE,/* A B R(A) := R(B) */ L0155 OP_LOADK,/* A Bx R(A) := Kst(Bx) */ L0156 OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ L0157 OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */ L0158 OP_GETUPVAL,/* A B R(A) := UpValue[B] */ L0159 L0160 OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */ L0161 OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ L0162 L0163 OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */ L0164 OP_SETUPVAL,/* A B UpValue[B] := R(A) */ L0165 OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ L0166 L0167 OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ L0168 L0169 OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ L0170 L0171 OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ L0172 OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ L0173 OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ L0174 OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ L0175 OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ L0176 OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ L0177 OP_UNM,/* A B R(A) := -R(B) */ L0178 OP_NOT,/* A B R(A) := not R(B) */ L0179 OP_LEN,/* A B R(A) := length of R(B) */ L0180 L0181 OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ L0182 L0183 OP_JMP,/* sBx pc+=sBx */ L0184 L0185 OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ L0186 OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ L0187 OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ L0188 L0189 OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ L0190 OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ L0191 L0192 OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ L0193 OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ L0194 OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ L0195 L0196 OP_FORLOOP,/* A sBx R(A)+=R(A+2); L0197 if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ L0198 OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ L0199 L0200 OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); L0201 if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ L0202 OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ L0203 L0204 OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/ L0205 OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ L0206 L0207 OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */ L0208 } OpCode; L0209 L0210 L0211 #define NUM_OPCODES (cast(int, OP_VARARG) + 1) L0212 L0213 L0214 L0215 /*=========================================================================== L0216 Notes: L0217 (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1, L0218 and can be 0: OP_CALL then sets `top' to last_result+1, so L0219 next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'. L0220 L0221 (*) In OP_VARARG, if (B == 0) then use actual number of varargs and L0222 set top (like in OP_CALL with C == 0). L0223 L0224 (*) In OP_RETURN, if (B == 0) then return up to `top' L0225 L0226 (*) In OP_SETLIST, if (B == 0) then B = `top'; L0227 if (C == 0) then next `instruction' is real C L0228 L0229 (*) For comparisons, A specifies what condition the test should accept L0230 (true or false). L0231 L0232 (*) All `skips' (pc++) assume that next instruction is a jump L0233 ===========================================================================*/ L0234 L0235 L0236 /* L0237 ** masks for instruction properties. The format is: L0238 ** bits 0-1: op mode L0239 ** bits 2-3: C arg mode L0240 ** bits 4-5: B arg mode L0241 ** bit 6: instruction set register A L0242 ** bit 7: operator is a test L0243 */ L0244 L0245 enum OpArgMask { L0246 OpArgN, /* argument is not used */ L0247 OpArgU, /* argument is used */ L0248 OpArgR, /* argument is a register or a jump offset */ L0249 OpArgK /* argument is a constant or register/constant */ L0250 }; L0251 L0252 LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES]; L0253 L0254 #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) L0255 #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) L0256 #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) L0257 #define testAMode(m) (luaP_opmodes[m] & (1 << 6)) L0258 #define testTMode(m) (luaP_opmodes[m] & (1 << 7)) L0259 L0260 L0261 LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ L0262 L0263 L0264 /* number of list items to accumulate before a SETLIST instruction */ L0265 #define LFIELDS_PER_FLUSH 50 L0266 L0267 L0268 #endif

Generated by
pretty.lua